#include<iostream>
#include <vector>
#include <cmath>
#include <cstdio>
using namespace std;
int main()
{
double r,n;
while(scanf("%lf%lf",&r,&n)!=EOF) {
double res = n*.5*r*r*sin((2*M_PI/n));
printf("%.3lf\n",res);
}
return 0;
}
Tuesday, March 9, 2010
UVa 10432
Finding the area of a polygon in a circle is fairly trivial if you remember basic trigonometry or you can make use of Wikipedia (like I did). The solution here uses the fact that a polygon is made up of many triangles and the area for a triangle whose SideAngleSide are known can be obtained using area = 1/2 * side * side * sin(angle). Initially I had gone for Law of Cosines and the Heron's formula but I could not get an AC so here is the code...
Saturday, March 6, 2010
Graham Scan
This is a standard computational geometry algorithm. It is used to find the convex hull of a set of points on a plane in O(n*log(n)). For more info check this out http://en.wikipedia.org/wiki/Graham_scan . The following is an implementation of the same :
#include<iostream>
#include<vector>
#include<stack>
#include<algorithm>
using namespace std;
class Point
{
public:
// (x, y)
double first,second;
Point():first(.0),second(.0){}
Point(double _x,double _y):first(_x),second(_y){}
friend ostream& operator << (ostream& os, const Point & ref);
};
// printer for Point
ostream& operator << (ostream& os, const Point & ref) {
return os<<"("<<ref.first<<", "<<ref.second<<")"<<endl;
}
// lowest and the eft-most point
Point p1;
// comparator for the points -- sorts according to polar angles wrt to p1
class comparatorOfPoints
{
public:
bool operator () (const Point& p2, const Point& p3) const
{
// assuming three points p1,p2,p3
// vector v1 = p2 - p1 and v2 = p3 - p1
// vector cross product of v1*v2 > 0 iff p3 lies on left of v1
return (p2.first - p1.first)*(p3.second - p1.second) - (p2.second - p1.second)*(p3.first - p1.first) >= 0;
}
};
// USAGE
// 1) feed all points --> GrahamScan(deque<Point> _listOfPoints)
// 2) sort all the points --> deque<Point> buildSortedListOfPoints();
// 3) build convex hull --> deque<Point> buildConvexHull();
class GrahamScan
{
private :
// holds all the points in the plane
deque<Point > listOfPoints;
public:
GrahamScan(deque<Point> _listOfPoints):listOfPoints(_listOfPoints){}
GrahamScan(const GrahamScan & ref):listOfPoints(ref.listOfPoints){}
// sorts the points using the comparator
deque<Point> buildSortedListOfPoints();
// finds the convex hull
deque<Point> buildConvexHull();
};
deque<Point> GrahamScan::buildSortedListOfPoints() {
// Sanity check
if(listOfPoints.size()<3) return listOfPoints;
// finds p1
p1 = listOfPoints[0];
int positionOfP1 = 0;
for(int i = 1; i < listOfPoints.size(); ++i) {
if(listOfPoints[i].second < p1.second) {
p1 = listOfPoints[i];
positionOfP1 = i;
}
else if(listOfPoints[i].second == p1.second) {
if(listOfPoints[i].first < p1.first) {
p1 = listOfPoints[i];
positionOfP1 = i;
}
}
}
// leave p1 and sort the rest
swap(listOfPoints[0], listOfPoints[positionOfP1]);
sort(listOfPoints.begin()+1, listOfPoints.end(), comparatorOfPoints());
return listOfPoints;
}
// utility function to print the stack
void printStack(stack<Point> sp) {
cout<<"__STACK__"<<endl;
while(!sp.empty()) {
Point temp = sp.top();
sp.pop();
cout<<temp<<endl;
}
cout<<"-----------"<<endl;
}
deque<Point> GrahamScan::buildConvexHull() {
// Sanity Check
if(listOfPoints.size()<=3) return listOfPoints;
stack<Point> stackOfPoints;
stackOfPoints.push(listOfPoints[0]);
stackOfPoints.push(listOfPoints[1]);
for(int index = 2 ; index<listOfPoints.size(); ++ index) {
// printStack(stackOfPoints);
Point p2 = stackOfPoints.top();
stackOfPoints.pop();
Point p1 = stackOfPoints.top();
stackOfPoints.pop();
Point p3 = listOfPoints[index];
int turn = (p2.first - p1.first)*(p3.second - p1.second) - (p2.second - p1.second)*(p3.first - p1.first);
if(turn == 0) {
// ignore intermediate collinear points
stackOfPoints.push(p1);
stackOfPoints.push(p3);
continue;
}
else if(turn > 0) {
stackOfPoints.push(p1);
stackOfPoints.push(p2);
stackOfPoints.push(p3);
continue;
}
else if(turn < 0) {
// cout<<"encountered a right turn for " <<p3;
stackOfPoints.push(p1);
Point p2,p1;
int _turn = turn;
while(stackOfPoints.size() >= 2 && _turn <= 0) {
printStack(stackOfPoints);
p2 = stackOfPoints.top();
stackOfPoints.pop();
p1 = stackOfPoints.top();
stackOfPoints.pop();
_turn = (p2.first - p1.first)*(p3.second - p1.second) - (p2.second - p1.second)*(p3.first - p1.first);
cout<<"turn = "<<_turn<<endl;
}
if(_turn > 0) {
cout<<"right turn resolved for " <<p3;
stackOfPoints.push(p1);
stackOfPoints.push(p2);
stackOfPoints.push(p3);
printStack(stackOfPoints);
continue;
}
// Sanity check
else if(stackOfPoints.size()<2) {
cout<<"can not from a convex hull due to stack underflow"<<endl;
return deque<Point>();
}
}
}
deque<Point> convexHull;
while(!stackOfPoints.empty()) {
convexHull.push_front(stackOfPoints.top());
stackOfPoints.pop();
}
return convexHull;
}
// driver
int main() {
deque<Point> pointsOnPlane;
pointsOnPlane.push_back(Point(5,5));
pointsOnPlane.push_back(Point(1,-1));
pointsOnPlane.push_back(Point(0,0));
pointsOnPlane.push_back(Point(2,2));
pointsOnPlane.push_back(Point(-1,-1));
pointsOnPlane.push_back(Point(-5,4));
GrahamScan grahamScan(pointsOnPlane);
grahamScan.buildSortedListOfPoints();
deque<Point> convexHull=grahamScan.buildConvexHull();
for(int i=0;i<convexHull.size();i++) {
cout<<convexHull[i];
}
return 0;
}
Subscribe to:
Posts (Atom)